R: keyword extraction with naive bayes -


i've got documents , each document i've got keywords. want use these documents train model. data looks follows:

postag <- list()    tfidf <- list()    labels <- list() 

one element of each list represents document. there 50 documents. postag[[1]] vector part of speech tagging each word in document 1, tfidf[[1]] vector tfidffactor each word in document 1, labels[[1]] vector labels (0 = no keyword, 1 = keyword). note: words each document ordered: postag[[1]][1] pos first word in document 1, tfidf[[1]][1] tfidffactor same word in document 1, , labels[[1]][1] says if word keyword.

now want use these 50 documents train (naive bayes) model predicts if word keyword or not. features tfidf factor , pos. me?

you can use e1071 package:

data(iris) m <- naivebayes(species ~., data = iris) predict(m, iris) 

note column species must factor variable example:

iris["species"]<- as.factor(iris["species"]) 

but in case species factor already, don't have change it.


Comments

Popular posts from this blog

matlab - "Contour not rendered for non-finite ZData" -

delphi - Indy UDP Read Contents of Adata -

javascript - Any ideas when Firefox is likely to implement lengthAdjust and textLength? -